<b>数据构造学习(C++)之图</b>[VC/C++编程]
本文“<b>数据构造学习(C++)之图</b>[VC/C++编程]”是由七道奇为您精心收集,来源于网络转载,文章版权归文章作者所有,本站不对其观点以及内容做任何评价,请读者自行判断,以下是其具体内容:
图的利用恐怕是全部数据构造中最广泛的了,但这也注定了在讲“数据构造的图”的时刻没什么好讲的——关于图的最重要的是算法,并且相当的一部份都是很专业的,普通的人几近不会接触到;相对而言,构造就显得份量很轻.你可以看到关于图中元素的操作很少,远没有单链表那边列出的一大堆“接口”.——一个构造假如复杂,那么能切当定义的操作就很有限.
基本储存办法
不管怎么说,还是先得把图存起来.不要看书上列出了好多办法,根本只有一个——毗邻矩阵.假如矩阵是稀疏的,那便可以用十字链表来储存矩阵(见前面的《稀疏矩阵(十字链表)》).假如我们只关系行的关系,那么就是毗邻表(出边表);反之,只关心列的关系,就是逆毗邻表(入边表).
下面给出两种储存办法的实现.
#ifndef Graphmem_H
#define Graphmem_H
#include <vector>
#include <list>
using namespace std;
template <class name, class dist, class mem> class Network;
const int maxV = 20;//最大节点数
template <class name, class dist>
class AdjMatrix
{
friend class Network<name, dist, AdjMatrix<name, dist> >;
public:
AdjMatrix() : vNum(0), eNum(0)
{
vertex = new name[maxV]; edge = new dist*[maxV];
for (int i = 0; i < maxV; i++) edge[i] = new dist[maxV];
}
~AdjMatrix()
{
for (int i = 0; i < maxV; i++) delete []edge[i];
delete []edge; delete []vertex;
}
bool insertV(name v)
{
if (find(v)) return false;
vertex[vNum] = v;
for (int i = 0; i < maxV; i++) edge[vNum][i] = NoEdge;
vNum++; return true;
}
bool insertE(name v1, name v2, dist cost)
{
int i, j;
if (v1 == v2 || !find(v1, i) || !find(v2, j)) return false;
if (edge[i][j] != NoEdge) return false;
edge[i][j] = cost; eNum++; return true;
}
name& getV(int n) { return vertex[n]; } //没有越界查抄
int nextV(int m, int n)//返回m号顶点的第n号顶点后第一个毗邻顶点号,无返回-1
{
for (int i = n + 1; i < vNum; i++) if (edge[m][i] != NoEdge) return i;
return -1;
}
private:
int vNum, eNum;
dist NoEdge, **edge; name *vertex;
bool find(const name& v)
{
for (int i = 0; i < vNum; i++) if (v == vertex[i]) return true;
return false;
}
bool find(const name& v, int& i)
{
for (i = 0; i < vNum; i++) if (v == vertex[i]) return true;
return false;
}
};
template <class name, class dist>
class LinkedList
{
friend class Network<name, dist, LinkedList<name, dist> >;
public:
LinkedList() : vNum(0), eNum(0) {}
~LinkedList()
{
for (int i = 0; i < vNum; i++) delete vertices[i].e;
}
bool insertV(name v)
{
if (find(v)) return false;
vertices.push_back(vertex(v, new list<edge>));
vNum++; return true;
}
bool insertE(const name& v1, const name& v2, const dist& cost)
{
int i, j;
if (v1 == v2 || !find(v1, i) || !find(v2, j)) return false;
for (list<edge>::iterator iter = vertices[i].e->begin();
iter != vertices[i].e->end() && iter->vID < j; iter++);
if (iter == vertices[i].e->end())
{
vertices[i].e->push_back(edge(j, cost)); eNum++; return true;
}
if (iter->vID == j) return false;
vertices[i].e->insert(iter, edge(j, cost)); eNum++; return true;
}
name& getV(int n) { return vertices[n].v; } //没有越界查抄
int nextV(int m, int n)//返回m号顶点的第n号顶点后第一个毗邻顶点号,无返回-1
{
for (list<edge>::iterator iter = vertices[m].e->begin();
iter != vertices[m].e->end(); iter++) if (iter->vID > n) return iter->vID;
return -1;
}
private:
bool find(const name& v)
{
for (int i = 0; i < vNum; i++) if (v == vertices[i].v) return true;
return false;
}
bool find(const name& v, int& i)
{
for (i = 0; i < vNum; i++) if (v == vertices[i].v) return true;
return false;
}
struct edge
{
edge() {}
edge(int vID, dist cost) : vID(vID), cost(cost) {}
int vID;
dist cost;
};
struct vertex
{
vertex() {}
vertex(name v, list<edge>* e) : v(v), e(e) {}
name v;
list<edge>* e;
};
int vNum, eNum;
vector<vertex> vertices;
};
#endif
这个实现是很粗陋的,但应当能满意背面的讲授了.目前这个还什么都不能做,不要急,在下篇将报告图的DFS和BFS.
以上是“<b>数据构造学习(C++)之图</b>[VC/C++编程]”的内容,如果你对以上该文章内容感兴趣,你可以看看七道奇为您推荐以下文章:
本文地址: | 与您的QQ/BBS好友分享! |