七道奇
找到您需要的资源啦!?本站所有软件高速免费下载,记得下次再来哦,七道奇您下载的首选
软件大小:5.00 MB 下载次数:99
更新时间:2021-10-19 23:00:00

软件简介:上一页99云办公 V2.3.0 免费非破解版下载 下一页greenshot绿色版 V1.3.218 中文免费非破解版下载


  本软件是由七道奇为您精心收集,来源于网络转载,软件收录的是官方版,软件版权归软件作者所有,本站不对其观点以及内容做任何评价,请读者自行判断,以下是其具体内容:
  

  stata是一款功能强大的图表绘制软件,为用户提供了管理、分析、绘制定量数据等功能,让数据的统计分析工作更加轻松高效。软件已经成功破解,内附有破解文件,能够完美的激活该软件,从而就能够免费使用该软件中的所有功能

stata

【软件功能】

  1、双重差分法的官方命令

  “双重差分法”(Difference-in-differences,简记DID)或许是最常用的计量方法。怎么能没有DID的Stata官方命令呢?为此,Stata 17及时地推出了DID的官方命令xtdidregress;其中,“xt” 表示这是适用于面板数据的命令。

  除了进行常规的 DID 估计,命令xtdidregress还允许最多指定三个“分组变量”(group variables),或两个分组变量与一个时间变量,从而进行“三重差分法”(Difference-in-differences-in-differences,简记DDD)的估计。

  另外,针对“重复截面数据”(repeated cross-sectional data),即所谓“准面板”(pseudo panel data),Stata 17也推出了相关的新命令didregress,可进行类似 DID 的估计。更重要的是,你可以用DID的官方命令,轻松地画平行趋势图啦~

  2、完美的表格输出

  实证研究者经常需要将Stata的多个回归结果以表格形式输出到word文件中。虽然早有官方命令estimates table可完成此类任务,但比较死板;故此前Stata用户一般使用非官方命令(比如estout或outreg)来输出回归结果。为此,Stata 17大幅改善了原来的table命令,使用户可轻松地以表格形式汇报回归结果(regression results)或统计特征(summary statistics)。

  进一步,你可以设计回归表格的风格(styles),并应用于所创建的表格,然后将此表格输出到Word或其他形式的文件(包括PDF、HTML、LaTex、Excel、markdown 等)。另外,你还可以使用新增的前缀(prefix)collect,来收集Stata命令的各种估计结果。最后,Stata 17还新增了Table Builder(表格创建器),让用户可通过点击鼠标(point-and-click)来创建表格。

  3、Lasso的新功能

  作为“高维回归”(high-dimensional regression)的常用工具,Stata 16已经推出了有关Lasso(Least Absolute Shrinkage and Selection Operator,即所谓 “套索估计量”)的一系列官方命令。Stata 17则提供了更多有关 Lasso 的新功能。

  使用Lasso估计处理效应模型。在 Stata 16 中,可使用命令teffects估计“处理效应”(treatment effects)模型;而命令lasso则用于估计协变量很多的高维模型。Stata 17则将二者结合起来,其推出的新命令telasso,可估计包含很多协变量的处理效应模型。

  使用 BIC 选择Lasso惩罚参数。作为一种“惩罚回归”(penalized regression),在进行Lasso估计时,需要选择惩罚参数(penalty parameter)。在Stata 16中,可使用交叉验证(cross-validation)、适应性方法(adaptive method)或代入法(plugin)来选择惩罚参数。

  在Stata 17中,新增了选择项 “selection(bic)”,可使用 “贝叶斯信息准则”(Bayesian Information Criterion,简记BIC)选择惩罚参数。而且,新增的估计后命令(postestimation command)bicplot 可以很方便地将此选择过程可视化。

  使用Lasso处理聚类数据。对于“聚类数据”(cluster data),由于每个聚类中观测值存在自相关,故通常的Lasso估计可能导致偏差。在Stata 17中,在使用命令lasso或elasticnet时,可通过新增选择项 “cluster(clustvar)” 来处理聚类数据。进一步,对于使用Lasso进行统计推断的命令,比如poregress(表示partialing-out regress),则可使用Stata 17的新增选择项 “cluster(clustvar)” 来得到聚类稳健的标准误(cluster-robust standard errors)。

  4、离散选择模型的新命令

  离散选择模型(discrete choice model)是微观计量经济学的常用模型。在Stata 17中,增加了以下离散选择模型的新命令:

  “面板多项逻辑模型”(panel multinomial logit model)。对于横截面数据的多项逻辑模型,Stata已有mlogit命令。Stata 17新增的xtmlogit命令则可使用面板数据估计多项逻辑模型。这无疑是Stata在离散选择模型方面的一大进步,因为此前Stata只能使用xtlogit或xtprobit估计面板二值选择模型。

  “零膨胀排序逻辑模型”(zero-inflated ordered logit model)。对于排序数据(ordered data),此前可使用Stata命令ologit或oprobit进行估计。在实践中,有时排序数据中最低类别所占比重很大。若将最低类别的取值记为“零”,则存在所谓“零膨胀”现象。此时可使用Stata 17的新增命令ziologit,估计更有效率的“零膨胀排序逻辑模型”(zero-inflated ordered logit model)。

  5、久期数据的新命令

  “久期数据”(duration data)常用于生物统计的 “生存分析”(survival analysis),在经济学中也有广泛用途,例如失业的持续时间,婚姻的延续时长,王朝的寿命等。久期数据常存在 “删失”(censoring)或 “归并” 问题,比如当研究结束时,有些病人可能尚未死亡;或者有些失业者还未找到工作。

  Stata 17新推出的命令stintcox,可使用Cox模型来估计一种特殊的“区间删失”(interval-censored)数据。对于区间删失数据,我们只知道事件发生于某个区间,但无法确知其发生时点;比如,只知道癌症复发于两次体检之间的时段。如果忽略久期数据存在的区间删失问题,则会导致估计偏差。

  6、贝叶斯计量经济学的全面升级

  在大数据时代,由于数据日益复杂而多样,在处理有些问题时,基于频率学派的传统计量方法可能不便使用,使得贝叶斯学派的计量经济学逐渐兴起。频率学派认为待估计的参数是给定的未知数(fixed unknown parameters),而贝叶斯学派则将未知参数视为服从某个分布的随机变量,并可随时根据新的样本信息将其 “先验分布”(prior distribution)更新为 “后验分布”(posterior distribution)。Stata 17将Stata中原有的贝叶斯统计学与计量经济学进行了全面升级。

  贝叶斯面板数据模型(Bayesian panel-data models)。Stata目前已有的面板命令包括xtreg(静态面板),xtlogit或xtprobit(面板二值选择模型),以及xtologit或xtoprobit(面板排序模型)等。在 Stata 17中,如果要使用贝叶斯方法估计这些面板模型,只要在原命令之前加上 “前缀”(prefix)bayes即可。

  贝叶斯向量自回归模型(Bayesian VAR models)。“向量自回归”(Vector Autoregression,简记VAR)是常见的时间序列模型。在已有的Stata中,可用命令var来估计VAR模型,而后续命令则包括:使用fcast进行 “动态预测”(dynamic forecast),以及使用irf估计 “脉冲响应函数”(impulse response function,简记 IRF)与 “预测误差方差分解”(forecast error variance decomposition,简记 FEVD)。

  在Stata 17中,则可使用命令“bayes: var”(即在命令var之前加上前缀 bayes)估计贝叶斯的 VAR 模型,然后用bayesfcast进行动态预测;而脉冲响应函数与预测误差方差分解也可类似地得到。

  然后,使用bayesfcast进行动态预测;

  而脉冲响应函数(IRF)与预测误差方差分解(FEVD)也可类似地得到。

  使用贝叶斯方法估计VAR模型有两大好处。首先,VAR模型通常包含较多参数,若样本较小,则估计结果不稳定。而贝叶斯方法由于较易“整合先验信息”(incorporating prior information),故在用小样本估计VAR模型时更为稳健。

  其次,经典的VAR模型使用大样本理论进行统计推断与预测,需要假设估计量服从渐近正态分布,在小样本中不易满足。而贝叶斯方法则不使用大样本理论,也无须渐近正态的假设,故更适用于小样本。

  贝叶斯多层模型(Bayesian multilevel models)。Stata 17新推出的bayesmh命令可以估计一系列的贝叶斯多层模型,包含“单变量”(univariate)或“多变量”(multivariate)的线性与非线性多层模型(linear and nonlinear multilevel models),乃至面板的生存时间模型(joint longitudinal and survival-time models)以及结构方程之类的模型(SEM-type models)等。

  贝叶斯线性与非线性DSGE模型(Bayesian linear and nonlinear DSGE models)。“动态随机一般均衡”(Dynamic Stochastic General Equilibrium,简记DSGE)模型是宏观经济学的主流模型。在Stata 16 中,可使用命令dsge与dsgenl分别估计线性与非线性的 DSGE 模型。

  在Stata 17中,只要在命令dsge与dsgenl之前加上前缀bayes,即可估计相应的线性或非线性的贝叶斯DSGE模型。可供用户选用的 “先验分布”(prior distribution)多达30以上,并可进行贝叶斯脉冲响应分析(Bayesian IRF analysis),区间假设检验(interval hypothesis testing),以及使用贝叶斯因子(Bayesian factors)来比较模型等。

  7、非参数的趋势检验

  有时样本数据中存在分组(比如,分为3组),且这些分组有天然的排序(比如,记为1,2,3组),即所谓 “排序分组”(ordered groups)。在这种排序分组的数据中,经常希望检验某个变量在此分组排序中(比如,第1-3组),是否存在某种趋势,比如此变量的取值倾向于越来越大,即所谓 “tests for trend across ordered group”。

  为此,可使用Stata已有命令nptrend,进行非参数的Cuzick秩检验(Cuzick test using ranks)。而Stata 17的最新版nptrend命令,则在 Cuzick秩检验之外,新增了三个非参数检验,即“Cochran-Armitage test”,“Jonckheere-Terpstra test” 与“linear-by-linear trend test”,使得命令nptrend的功能大大增强。

stata

  8、元分析的新命令

  “元分析”(meta-analysis)将多个类似的研究结果综合在一起。比如,针对某个疫苗的有效性(vaccine efficacy),在世界各地进行了多个实验,如何将每个实验所得的疫苗有效性指标,通过加权平均得到统一的度量。Stata 17将Stata的元分析功能作了进一步的提升。

  多维元分析(Multivariate meta-analysis)。在将多个研究结果综合在一起时,其中的每个研究可能同时汇报 “多个效应规模”(multiple effect sizes),而这些效应之间可能存在相关性。若使用Stata既有的 meta命令,则会忽略这种相关性。Stata 17的新增命令meta mvregress可进行多维元分析,并处理这种相关性。

  加尔布雷斯图(Galbraith plots)。Stata 17还新增了命令meta galbraithplot,可以画元分析的 “加尔布雷斯图”(Galbraith plots)。此图可用于评估不同研究之间的异质性(assessing heterogeneity of the studies),并发现潜在的极端值(potential outliers)。

  留一元分析(Leave-one-out meta analysis)。Stata 17新增了 “留一元分析”(Leave-one-out meta-analysis)的功能。所谓“留一元分析”,就是在进行元分析时,每次均留出一个研究(不放在样本中),以考察元分析结果的稳健性;比如,最终结果是否过度依赖于某个研究。在使用Stata命令meta summarize或meta forestplot进行元分析时,可使用新增的选择项leaveoneout来进行留一元分析。

  9、Stata与Python、Java、H2O及Jupyter Notebook的整合

  在大数据时代,Stata也在加快与主流软件平台的整合,为用户提供更多的增值服务。这在Stata 17的此次升级中体现尤其突出。

  与 Python 的整合(Python integration)。Python已是炙手可热的主流计算机语言。为此,Stata 16专门提供了一个与Python的接口,让用户在熟悉的Stata界面下调用Python,并在Stata中显示运行结果。Stata 17则更进一步,推出了新的Python包(Python package)pystata,使得用户可在Python 中方便地调用Stata。Stata 17还引入了一个新概念 “PyStata” ,包括 Stata与Python交互的所有方式。

  与 Java 的整合(Java integration)。Java是一种应用广泛的跨平台编程语言。在Stata 17中,你可以十分方便地在Stata程序中嵌入并执行 Java 代码。

  对于JDBC数据交换格式的支持(Support for JDBC)。JDBC(Java Database Connectivity)是一个在不同程序与数据库之间交换数据的跨平台标准(a cross-platform standard for exchanging data between programs and databases)。在Stata 17中,通过支持JDBC,使得 Stata用户可从一些最流行的数据库导入数据,包括Oracle、MySQL、AmazonRedShift、Snowflake、Microsoft SQL Server等。

  与H2O的整合(H2O integration)。H2O是一款流行的机器学习软件平台。在Stata 17中,你可以连接并调用H2O的机器学习算法。这无疑为Stata用户打开了另外一扇通往机器学习的窗口!

  在Jupyter Notebook中使用Stata(Jupyter Notebook with Stata)。Jupyter Notebook是一款基于网页的流行“集成开发环境”(integrated development environment,简记 IDE),尤其方便展示代码、公式、文字与可视化。在Stata 17中,作为PyStata的一部分(依赖于 Python 包 pystata),你可以从 Jupyter Notebook调用 Stata与Mata(Stata的矩阵语言)。这意味着,你可以在同一环境中整合Python与Stata的功能,使得你的工作更加可复制(reproducible)且易于分享。

  10、Do文件编辑器的改进与Stata速度提升等

  Do文件编辑器的改进(Do-file Editor improvements)。随着编程的重要性日益提高,Stata 16在Do文件编辑器中加入了 “自动填写完成”(autocompletion)与 “语法高亮”(syntax highlighting)的功能。Stata 17又将Do文件编辑器的功能进一步提升。

  在Stata 17的Do文件编辑器中,可通过设置 “bookmarks”(书签)而在一个较长的do文件中迅速跳至想要编辑的部分。Stata 17的Do文件编辑器还新增了“navigation control”(导航),其中罗列所有的书签及其标签(bookmarks and their labels),以该Do文件中的全部“程序”(programs)。

  Stata的速度提升(Faster Stata)。在大数据时代,基础算法的速度越来越重要。为此,Stata 17更新了命令sort与collapse的算法,使之更为快捷。另外,Stata 17也提升了命令mixed(用于估计多层混合效应模型,即 multilevel mixed-effects models)的运行速度。

  使用Intel Math Kernel Library(MKL)提升速度。Stata 17引入了Intel Math Kernel Library(MKL),适用于所有Intel或AMD的64位计算机,从而可调用深度优化(deeply optimized)的LAPACK(Linear Algebra PACKage)线性代数包。这将使得Stata与Mata的底层计算速度进一步提升,而Stata用户无须作任何事情即可享用。

  处理日期与时间的新函数(New functions for dates and times)。Stata 17 引入了方便处理日期与时间的新函数,包括Datetime duration(计算持续时间),Datetime relative dates(计算相对日期,比如下个生日的日期),以及Datetime(从日期中提取不同的成分)。这些新函数还会自动考虑闰年(leap years)、闰日(leap days)与闰秒(leap seconds)的因素。

  总之,Stata 17是一次令人激动的重大升级,不仅有贝叶斯计量经济学的高歌猛进,与主流计算机语言平台的深度整合,更便于编程的Do文件编辑器,而且更为贴近计量实战的需求(DID,表格输出,离散选择等)。显然,在可预见的将来,Stata 依然会是经管社科的首选计量与统计软件。

stata

【软件特色】

  统计功能

  该软件的统计功能很强,除了传统的统计分析方法外,还收集了近 20 年发展起来的新方法,如 Cox 比例风险回归,指数与 Weibull 回归,多类结果与有序结果的 logistic 回归, Poisson 回归,负二项回归及广义负二项回归,随机效应模型等。具体说,具有如下统计分析能力:

  数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。

  分类资料的一般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流行病学表格分析等。

  等级资料的一般分析:秩变换,秩和检验,秩相关等

  相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。

  其他方法:质量控制,整群抽样的设计效率,诊断试验评价, kappa 等。

  作图功能

  作图模块中主要提供如下八种基本图形的制作 : 直方图 (histogram) ,条形图 (bar), 百分条图 (oneway) ,百分圆图 (pie) ,散点图 (twoway) ,散点图矩阵(matrix) ,星形图 (star) ,分位数图。这些图形的巧妙应用,可以满足绝大多数用户的统计作图要求。在有些非绘图命令中,也提供了专门绘制某种图形的功能,如在生存分析中,提供了绘制生存曲线图,回归分析中提供了残差图等。

  矩阵运算功能

  矩阵代数是多元统计分析的重要工具,提供了多元统计分析中所需的矩阵基本运算,如矩阵的加、积、逆、 Cholesky 分解、 Kronecker 内积等;还提供了一些高级运算,如特征根、特征向量、奇异值分解等;在执行完某些统计分析命令后,还提供了一些系统矩阵,如估计系数向量、估计系数的协方差矩阵等。

  程序设计功能

  这是一个统计分析软件,但它也具有很强的程序语言功能,这给用户提供了一个广阔的开发应用的天地,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。事实上,我们这个软件的 ado 文件 ( 高级统计部分 ) 都是用自带的语言编写的

  其统计分析能力远远超过了 SPSS ,在许多方面也超过了 SAS !由于该软件在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据,因此计算速度极快(一般来说, SAS 的运算速度要比 SPSS 至少快一个数量级,而 Stata 的某些模块和执行同样功能的 SAS 模块比,其速度又比 SAS 快将近一个数量级!) Stata 也是采用命令行方式来操作,但使用上远比 SAS 简单。其生存数据分析、纵向数据(重复测量数据)分析等模块的功能甚至超过了 SAS 。用该软件绘制的统计图形相当精美,很有特色。

stata

【使用教程】

  1、新的元分析套件;改进和扩展的选择建模(边距适用于所有地方)

  2、Python与软件的集成;贝叶斯预测,多链以及更多

  3、面板数据的扩展回归模型(ERM);导入SAS和SPSS数据集

  4、灵活的非参数序列回归;内存中的多个数据集,即帧

  5、置信区间的样本大小分析;非线性DSGE模型

  6、多组IRT;面板数据Heckman选择模型

  7、具有滞后的NLME:多剂量药代动力学模型等

  8、Heteroskedastic命令probit;图形大小以英寸,厘米和打印机点为单位

  9、Mata中的数值积分;Mata中的线性编程

  10、文件编辑器:自动完成,语法高亮等; for Mac:暗模式和标签式窗口

stata

【软件特色】

  1、掌握您的数据

  软件的数据管理功能可让您完全控制。

  同时管理多个数据集

  进出口

  ODBC,SQL

  排序,匹配,合并,加入,追加,创建

  内置电子表格

  统一

  处理文本或二进制数据

  在本地或在Web上访问数据

  收集组间的统计信息

  BLOBs字符串,可以容纳整个文档

  数十亿行

  成千上万的变数

  生存数据,面板数据,多级数据,调查数据,离散选择数据,多重插补数据,分类数据,时间序列数据

  还有更多,支持您所有的数据科学需求。

  2、广泛的统计功能

  3、出版品质的图形

  软件可以轻松生成出版品质,风格独特的图形。

  您可以指向并单击以创建自定义图形。 或者,您可以编写脚本以可重现的方式生成数百或数千个图形。 将图形导出为EPS或TIFF以供发布,将PNG或SVG导出为Web,或导出为PDF以供查看。 使用集成的图形编辑器,您可以单击以更改有关图形的任何内容,或添加标题,注释,线条,箭头和文本。

  4、真正可重复的报告

  自动报告结果所需的所有工具。

  动态降价文档

  创建Word文档

  创建PDF文档

  创建Excel文件

  图形方案

  Word,HTML,PDF,Excel,SVG,PNG

  5、正可重复的研究

  很多人谈论可重复的研究。

  Stata已经致力于它超过30年。

  我们不断添加新功能; 我们甚至从根本上改变了语言元素。 不管。软件是唯一具有集成版本控制的统计软件包。 如果您在1985年编写了一个脚本来执行分析,那么相同的脚本仍然可以运行,并且今天仍会产生相同的结果。 您在1985年创建的任何数据集,今天都可以阅读。 在2050年也是如此软件将能够运行你今天所做的任何事情。

  6、真实的文档

  当需要进行分析或了解您正在使用的方法时,软件不会让您高低干燥或订购书籍以了解每个细节。

  我们的每个数据管理功能都经过充分解释和记录,并在实际示例中显示。每个估算器都有完整的文档记录,包括几个关于实际数据的示例,并对如何解释结果进行了真实的讨论。这些示例为您提供了数据,因此您可以在软件中工作甚至扩展分析。我们为您提供每个功能的快速入门,展示一些最常见的用途。想要更多细节吗?我们的方法和公式部分提供了计算内容的具体信息,我们的参考文献为您提供了更多信息。

  软件是一个很大的包,所以有很多文档 - 31卷超过15,000页。但不要担心,键入帮助我的主题,软件将搜索其关键字,索引,甚至社区提供的包,为您带来您需要了解的关于您的主题的一切。一切都在Stata内可用。

stata

  7、可信

  我们不只是编程统计方法,我们验证它们。

  您从估算器中看到的结果依赖于与其他估算器的比较,蒙特卡罗模拟的一致性和覆盖范围,以及我们的统计人员进行的大量测试。 我们发运的每个软件都通过了一个认证套件,其中包括320万行测试代码,可产生490万行输出。 我们对这490万行输出中的每个数字和文本进行认证。

  8、使用方便

  所有功能都可以通过菜单,对话框,控制面板,数据编辑器,变量管理器,图形编辑器甚至SEM图形生成器来访问。 您可以通过任何分析指向并单击您的方式。

  如果您不想编写命令和脚本,则不必这样做。

  即使您指向并单击,也可以记录所有结果,然后将其包含在报告中。 您甚至可以保存由您的操作创建的命令,并在以后重现您的完整分析。

  9、容易成长

  软件执行任务的命令直观且易于学习。更好的是,您学习执行任务的所有内容都可以应用于其他任务。例如,您只需将性别==“女性”添加到任何命令,以限制您对样本中的女性进行分析。您只需将vce(robust)添加到任何估算器中,以获得对许多常见假设都很稳健的标准误差和假设检验。

  一致性更深入。您对数据管理命令的了解通常适用于估算命令,反之亦然。还有一整套postestimation命令来执行假设检验,形成线性和非线性组合,进行预测,形成对比,甚至用交互图进行边际分析。在几乎每个估算器之后,这些命令的工作方式相同。

  用于读取和清理数据,然后执行统计测试和估计,最后报告结果的排序命令是可重复研究的核心。 软件使所有研究人员都可以访问此过程。

  10、易于自动化

  每个人都有他们一直在做的任务 - 创建特定类型的变量,生成特定的表,执行一系列统计步骤,计算RMSE等。可能性是无穷无尽的。 软件有数千个内置程序,但您可能拥有相对独特的任务或者您希望以特定方式完成的任务。

  如果您编写了一个脚本来执行给定数据集上的任务,则可以轻松地将该脚本转换为可用于所有数据集,任何变量集以及任何观察集的内容。

  11、易于扩展

  您自动化的一些内容可能非常有用,您希望与同事共享它们,甚至可以让所有用户使用它们。 这也很容易。只需一点代码,您就可以将自动化脚本转换为软件命令。支持官方命令支持的标准功能的命令。 可以与使用官方命令相同的方式使用的命令。

  12、高级编程

  软件还包括一种高级编程语言-Mata。

  Mata具有您期望在编程语言中使用的结构,指针和类,并为矩阵编程添加了直接支持。

  虽然您不需要编程来使用软件,但很高兴知道快速而完整的编程语言是软件的一个组成部分。Mata既是一个用于操作矩阵的交互式环境,也是一个可以生成编译和优化代码的完整开发环境。它包括处理面板数据的特殊功能,在实际或复杂矩阵上执行操作,为面向对象的编程提供全面支持,并与各个方面完全集成。

  还具有全面的Python集成,允许您直接从代码中利用Python的所有功能。

  甚至允许您通过每种语言的本机API在您的程序中集成C,C ++和Java插件。

stata

【破解说明】

  1、下载解压得到,软件安装包和crack破解补丁;

  2、运行SetupStata17.exe,开始安装软件;

  3、接受同意条款,然后继续安装;

  4、选择想要安装的版本,BE为基础版、SE为特别版、 MP为并行计算版;

  5、设置软件安装路径,默认即可;

  6、等待软件安装完成,先不要打开软件;

  7、将crack破解补丁中的文件复制到软件根目录下替换;

  默认路径:C:\Program Files\Stata17

【下载地址】

stata17破解版 V17.0 最新免费版



  “stata17破解版 V17.0 最新免费非破解版下载[绿色软件]”系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性七道奇不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

Copyright © 2020-2022 www.xiamiku.com. All Rights Reserved .